Article ID Journal Published Year Pages File Type
5219706 Tetrahedron 2012 10 Pages PDF
Abstract

Two reactions, vinyl polymerization and [1,3] O to C rearrangement of vinyl ethers, are investigated in the ruthenium-catalyzed reaction with hydrosilanes. The reaction pathways are dependent on the substituents of the vinyl ether, in particular, those of the alkoxy group. Primary-, secondary-, and tertiary-alkyl vinyl ethers, ROCHCH2, are polymerized with ease to give the corresponding polymer in good yields. When R is electron-donating benzyl groups, the reaction does not give the polyvinyl ether but results in [1,3] O to C rearrangement to give the corresponding aldehyde, RCH2CHO in moderate to good yields. The rearrangement selectively proceeds when vinyl ethers having α-substituents are used as the starting materials to give the corresponding ketones in high yields. With catalytic amounts of hydrosilanes, the rearrangement gives ketones or aldehydes selectively. In sharp contrast, use of excess amounts of hydrosilanes leads to the rearrangement followed by reduction of the formed carbonyl group to give the corresponding silyl ethers in good yields. Nature of catalytically active species is discussed.

Graphical abstractDownload full-size image

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,