Article ID Journal Published Year Pages File Type
5226050 Tetrahedron 2009 15 Pages PDF
Abstract

The conversion of isothiazoles into pyrazoles on treatment with hydrazine is investigated. The influence of various C-3, C-4 and C-5 isothiazole substituents and some limitations of this ring transformation are examined. When the isothiazole C-3 substituent is a good nucleofuge, 3-aminopyrazoles are obtained. However, when the 3-substituent is not a leaving group it is retained in the pyrazole product. Treatment of 4-bromo-3-chloro-5-phenylisothiazole 56 or 3-chloro-4,5-diphenylisothiazole 57 with anhydrous hydrazine at ca. 200 °C for a few minutes gives the corresponding 3-hydrazinoisothiazoles 61 and 64 respectively in high yields; the stability of these new hydrazines is investigated. 5,5′-Diphenyl-3,3′-biisothiazole-4,4′-dicarbonitrile 78 reacts with hydrazine to give 5,5′-diphenyl-3,3′-bi(1H-pyrazole)-4,4′-dicarbonitrile 79. Methylhydrazine reacts with 3-chloro-5-phenylisothiazole-4-carbonitrile 1 to give 3-(1-methylhydrazino)-5-phenylisothiazole-4-carbonitrile 83 and 3-amino-1-methyl-5-phenylpyrazole-4-carbonitrile 84. All products are fully characterised and rational mechanisms for the isothiazole into pyrazole transformation are proposed.

Graphical abstractDownload full-size image

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, ,