Article ID Journal Published Year Pages File Type
5226327 Tetrahedron 2008 7 Pages PDF
Abstract

We report octupolar trisporphyrin conjugates, derived from the symmetrical functionalization of a triphenylamine core with three ethynylporphyrin wings, exhibiting largely enhanced two-photon absorption (TPA) compared to the porphyrin monomers. Octupolar trisporphyrin conjugate tris-H2P was synthesized by the Pd(0)-catalyzed Sonogashira cross-coupling reaction of tris(4-iodophenyl)amine with 5,10,15-tri-(p-tolyl)-20-ethynylporphyrin, and fully characterized by various spectroscopic methods and elemental analysis. The optimized geometry of tris-H2P obtained by semi-empirical AM1 calculations reveals that tris-H2P adopts a propeller-shaped structure. Our photophysical studies strongly manifest that the trisporphyrin conjugates are promising octupolar fluorophores with effective π-conjugation over the porphyrin wings through the octupolar core. The trisporphyrin conjugates exhibit much larger TPA cross-section values in comparison with the monomers; the TPA cross-section σ(2) value of tris-ZnP (11,800 GM) exceeds that of mono-ZnP (630 GM) by about 20 times.

Graphical abstractDownload full-size image

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , ,