Article ID Journal Published Year Pages File Type
53362 Catalysis Today 2016 10 Pages PDF
Abstract

•Water bond breaking peak observed in oxygen ligand NEXAFS spectra.•Causal relationship between surface trap states and valence band hole states.•X-ray and impedance spectroscopy point to water splitting scenario at the molecular scale.

We re-assess experimental soft X-ray absorption spectra of the oxygen K-shell which we recorded operando from iron oxide during photoelectrochemical water splitting in KOH electrolyte. In particular, we refer to recently reported transitional electron hole states which originate within the charge carrier depletion layer of the iron oxide and on the iron oxide surface. For the latter we find that an intermediate oxy-peroxo species is formed on the iron oxide with increasing bias potential, which disappears upon further polarization of the electrode, concomitantly with the evolution and disappearance of the aforementioned surface state. The oxygen spectra contain also the spectroscopic signatures of the electrolyte water, the position of which changes with increasing bias potential towards lower X-ray energies, revealing the breaking and formation of hydrogen bonds in the water during the experiment. Combined with potential dependent impedance spectroscopy data we are able to sketch the molecular structure of chemical intermediates and their charge carrier dynamics.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (91 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , ,