Article ID Journal Published Year Pages File Type
5347961 Applied Surface Science 2017 10 Pages PDF
Abstract
Although LEDs have been widely studied using optical simulations, there is no optical model considering the effect of micro-roughness surface (MRS) on the optical performance for packaged LEDs. In this work, we employ the finite-difference time-domain method and the direction-sensitive bidirectional scattering distribution function to characterize the optical properties of the MRS upon the n-GaN layer. The MRS is generated by the Weierstrass-Mandelbrot fractal function. Furthermore, thin-film LEDs (TFLEDs), blue TFLED devices, and white TFLED devices considering the MRS are investigated using the ray-tracing (RT) method. The results show that the MRS has different optical properties when the light propagates out and in the n-GaN layer. In turn, the difference in the scattering ability of various MRS causes a significant effect on the optical performance of packaged TFLEDs, including radiant efficacy, luminous efficacy, intensity pattern and spectrum, as well as the correlated color temperature.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,