Article ID Journal Published Year Pages File Type
5348804 Applied Surface Science 2015 29 Pages PDF
Abstract
Based on first-principles calculations, the CO catalytic oxidation on the Fe-embedded monolayer MoS2 (Fe-MoS2) was investigated. It is found that Fe atom can be strongly constrained at the S vacancy of monolayer MoS2 with a high diffusion barrier. The CO oxidation reaction proceeds via a two-step mechanism with the highest energy barrier of 0.51 eV, which is started by the Langmuir-Hinshelwood reaction and ended by the Eley-Rideal reaction. The high catalytic activity of the Fe-MoS2 system may be attributed to the charge transfer and the orbital hybridization between the adsorbates and the Fe atom. This study proposes that embedding transition-metals is a promising way for making the basal plane of monolayer MoS2 catalytically active.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,