Article ID Journal Published Year Pages File Type
5349595 Applied Surface Science 2014 13 Pages PDF
Abstract
A plasmonic heterostructure of Ag (nanoisland)/n-Al:ZnO/p-Si is fabricated using pulsed laser deposition and thermal evaporation method. In this structure Al:ZnO plays an important role of transparent conductive oxide (spacer layer) as well as the rectifying junction with silicon. By introducing the silver nanoislands on Al:ZnO, light harvesting has been enhanced because of plasmonic and light scattering effect. Morphology of Ag nanoparticles in consequence with the optical and electrical properties of the device has been studied. Optical reflection measurement of the device with Ag nanoisland shows remarkable improvement in both visible and UV regions compared to the bare n-Al:ZnO/p-Si heterostructure. Near band edge emission in photoluminescence has been enhanced with the deposition of Ag nanoislands. Dark and illumination current density has also been increased with the deposition of Ag nanoisland. Our experimental results suggest that integration of Ag nanoislands may help to improve the efficiency of hybrid silicon based photonic devices.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,