Article ID Journal Published Year Pages File Type
5349755 Applied Surface Science 2014 7 Pages PDF
Abstract
Vanadium pentoxide (V2O5) nano-particles have been synthesized by flame spray pyrolysis method to investigate their cathodic performance in Li-ion rechargeable batteries. They were characterized by surface area (Brunauer-Emmett-Teller, BET method), scanning electron microscopy (SEM), transmission electron microscopy-energy dispersive spectrometry (TEM-EDS), selected area electron diffraction (SAED), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) methods. Spherical, crystalline (orthorhombic) nano-V2O5 particles were produced. The electrochemical tests, including cyclic voltammetry (CV) and ac impedance spectroscopy (IS), were performed to obtain the reversibility and conductivity kinetic parameters. From IS measurements, nano film conductivity was found to be 2.42 × 10−6 S cm−1, which is 10-fold higher than the commercial micro-particle V2O5 counterparts. From spectra, it was also found that the interfacial resistance became stable after 7200 s. The impedance results indicated that the rate of reaction at the interphase was controlled by both charge transfer and diffusion processes. The cyclic voltammogram showed high reversibility rate and low polarization.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,