Article ID Journal Published Year Pages File Type
5350909 Applied Surface Science 2015 6 Pages PDF
Abstract
Topography has a dominant role in determining the adhesion properties of a surface. In this work we explore how arrays of micron-sized dimples can alter the adhesion performance of elastomeric surfaces. We study the effect of the dimple surface coverage, showing that the dimples act both as passive suction devices, allowing to exceed the adhesion performance of untextured surfaces, and crack-like defects, generating stress concentration at the edge of the contact area between the surface of the sample and a flat surface. Interestingly, our results reveal that the suction effect generated by the negative pressure produced by the dimples can be effectively tuned by adjusting their depth. These findings have significant relevance for the fabrication of adhesive systems in which selective adhesion to objects with small difference in weight is required.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,