Article ID Journal Published Year Pages File Type
5352097 Applied Surface Science 2013 8 Pages PDF
Abstract
In this study, plasma electrolytic oxidation has been used to improve wear resistance of 2024-T3 aluminum alloy. An electrolyte containing available and inexpensive constituents was used. A conventional DC source with low applied voltage was employed. It was found that with increase in oxidation treatment time the micro-hardness of the coating were decreased while the friction coefficient increased. It was seen that deposition at optimum treatment time of 10 min resulted in the highest micro-hardness and lowest friction coefficient and weight loss. The surface and cross-sectional morphology indicated that the coatings have a dense structure with low porosity and without any cracking. Also, the presence of wear scars on the worn surface morphology demonstrates that the three-body rolling was the main wear mechanism for coated specimen. The phase analysis of the coating indicated that the coating was formed mainly from α-Al2O3, ɤ-Al2O3, Al3.21Si0.47 and small amounts of amorphous phases. The presence of glycerin in the electrolyte composition resulted in not only stabilizing the solution but also achieving of a dense and uniform coating without any cracking.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,