Article ID Journal Published Year Pages File Type
5352370 Applied Surface Science 2013 7 Pages PDF
Abstract
Laser shock forming metal foils with femtosecond (fs) laser has been investigated experimentally in this article. A new transparent material was used as confining layer. Two destroying mechanisms of the confining layer have been observed and analyzed. With appropriate processing parameters, we have validated that macro plastic deformations (micro dents) can be formed on metal foils through fs laser-induced shock wave. Surface morphologies and 3D profiles of dents were measured. Results show that there exists a relatively optimum pulse range for obtaining better shock effects. Too short pulse duration will induce serious nonlinear absorption of confining layer, while too large pulse duration will decrease light intensities. Both are detrimental for improving laser shock effect. One abnormal phenomenon about the influence of impact times on dent depths has been found. Through analysis and experiments, we analyzed that loose constraint condition of samples led to flattening effect on deeper dents and then decrease the dent depths. Confining layer can significantly enhance laser shock effect and improve plastic deformation, which is same as ns laser. The new confining layer has been proved to be suitable for fs laser shock forming.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,