Article ID Journal Published Year Pages File Type
5352526 Applied Surface Science 2016 6 Pages PDF
Abstract
Selective laser ablation of dielectric layers on crystalline silicon wafers was investigated for solar cell fabrication. Laser processing was performed on Al2O3, and bi-layers Al2O3/SiNX:H with a nanosecond UV laser at various energy densities ranging from 0.4 to 2 J cm−2. Ablation threshold was correlated to the simulated temperature at the interface between the dielectric coatings and the silicon substrate. Laser-induced damage to the silicon substrate was evaluated by time-resolved photoluminescence. The minority carrier lifetime deduced from time-resolved photoluminescence was related to the depth of the heat affected zone in the substrate.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,