Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5352894 | Applied Surface Science | 2017 | 11 Pages |
Abstract
Poly (m-phenylene isophthalamide)/graphene oxide (PMIA/GO) composite nanofiltartion (NF) membranes were prepared via a facile phase inversion method. Structures, surface properties and hydrophilicities of the membrane were analyzed using FT-IR, XPS, AFM, SEM, water contact angle and Zeta-potential measurements. FTIR spectra indicated the existence of hydrophilic carboxylic acid and hydroxyl groups in the GO molecules. SEM pictures revealed the large and finger-like micro-voids formed in the sublayer of the NF membranes after adding GO. The zeta-potential and water contact angle results proved that PMIA/GO composite membranes had more negatively charged and greater hydrophilic surfaces. The pure water flux of the PMIA/GO (0.3Â wt% GO) composite membrane (125.2 (L/m2/h)) was 2.6 times as high as that of the pristine PMIA NF membrane (48.3 (L/m2/h)) at 0.8Â MPa with slightly higher rejections to all tested dyes and better fouling resistance to bovine serum albumin (BSA). This study gave an effective method for preparing composite PMIA NF membranes with high water flux and excellent antifouling property, which showed potential application in water treatment.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Mei Yang, Changwei Zhao, Shaofeng Zhang, Pei Li, Deyin Hou,