Article ID Journal Published Year Pages File Type
5353389 Applied Surface Science 2014 7 Pages PDF
Abstract
Bio-inspired superhydrophobic surfaces were fabricated based on fossilized silica fresh water diatomaceous earth (DE) particles. These nanostructured silicified diatom frustules of cylindrical and circular structures were fluorinated to impart them with superhydrophobic properties. Substrates coated with superhydrophobic DE structures of varying size and shape were found to have water contact angles of approximately 170° and sliding angles of approximately 3°. The substrates were subjected to significant abrasion forces using a standard surface abrader. The ability to retain their superhydrophobic properties was observed to depend on the geometry and average size of the DE particles. The wettability of the abraded coatings was determined by their surface topology, and a transition from a non-wetted state to a partially wetted state was observed to occur and was dependent on the surface roughness. The proposed coatings are scalable, cost-effective, and can be applied on a variety of surfaces on critical infrastructures requiring protection from water saturation, ice formation and water based corrosion.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , , ,