Article ID Journal Published Year Pages File Type
5354580 Applied Surface Science 2016 11 Pages PDF
Abstract
A growth of Carbon Nanotubes (CNTs) suffers many difficulties in finding optimum growth parameters, reproducibility and mass-production, related to the large number of parameters influencing synthesis process. Choosing the proper parameters can be a time consuming process, and still may not give the optimal growth values. One of the possible solutions to decrease the number of the experiments, is to apply optimization methods to the design of the experiment parameter matrix. In this work, Taguchi method of designing experiments is applied to optimize the formation of iron catalyst during annealing process by analyzing average roughness and size of particles. The annealing parameters were: annealing time (tAN), hydrogen flow rate (fH2), temperature (TAN) and argon flow rate (fAr). Plots of signal-to-noise ratios showed that temperature and annealing time have the highest impact on final results of experiment. For more detailed study of the influence of parameters, the interaction plots of tested parameters were analyzed. For the final evaluation, CNT forests were grown on silicon substrates with AlOX/Fe catalyst by thermal chemical vapor deposition method. Based on obtained results, the average diameter of CNTs was decreased by 67% and reduced from 9.1 nm (multi-walled CNTs) to 3.0 nm (single-walled CNTs).
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,