Article ID Journal Published Year Pages File Type
5355547 Applied Surface Science 2015 9 Pages PDF
Abstract
A double-ceramic-layer (DCL) thermal barrier coatings (TBC) of La2(Zr0.7Ce0.3)2O7/8YSZ (LZ7C3/8YSZ) was prepared by atmospheric plasma spraying (APS). The phase structure, composition, thermal conductivity, surface and cross-sectional morphologies, adhesion strength and thermal shock behavior of the LZ7C3/8YSZ coating were investigated. The X-ray diffraction pattern showed that the phase structures of top coat LZ7C3 was different from the powder for spraying, which consists of pyrochlore LZ and fluorite LC structures. Main peaks between LZ and LC in as-sprayed LZ7C3 have almost overlapping diffracted angles and approximately equal diffracted intensity. Thermal shock lifetime and adhesion strength of the DCL LZ7C3/8YSZ coating are enhanced significantly as compared to single LZ7C3 coating, and are very close to that of single 8YSZ coating. The mechanisms of performance improvement are considered to be effictive reduction of stress concentration between substrate and LZ7C3 coating by 8YSZ buffer effect, and the gentle thermal gradient initiated at the time of quenching in water. The DCL LZ7C3/8YSZ coating has lower thermal conductivity than 8YSZ, which was only 25% of 8YSZ bulk material and 65% of 8YSZ coating by APS.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,