Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5355649 | Applied Surface Science | 2016 | 5 Pages |
Abstract
We report photo-induced colossal magnetoresistive insulator-metal transition (IMT) in Pr0.6Ca0.4MnO3 thin films under much reduced applied magnetic field. The colossal effect was studied as a function of film thickness and thus with variable structural properties. Thorough structural, magnetic and magnetotransport characterization under light shows that the highest effect on the transition field can be obtained in the thinnest film (38Â nm). However, due to the substrate induced strain of this film the required magnetic field for IMT is quite high. The best crystalline properties of the 110Â nm film lead to the lowest IMT field under light and 109% change in resistance at 10Â K. With increasing thickness, the film properties start to move more toward the bulk material and, hence, IMT is no more observed under the applied field of 9Â T. Our results indicate that for obtaining large photo-induced CMR, the best epitaxial quality of thin films is essential.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Tomi Elovaara, Hannu Huhtinen, Sayani Majumdar, Petriina Paturi,