Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5355770 | Applied Surface Science | 2015 | 10 Pages |
Abstract
Beta-phase Ti-Nb-based alloys are considered as new generation of biomaterials with improved mechanical compatibility for load-bearing implant applications. Small homogeneously dissolved In additions have a positive impact on the elastic properties of beta-type Ti-40Nb. For (Ti-40Nb)-4In the best match between low Young's modulus, high elastic energy and appropriate strength was achieved. In the present study the effect of In addition to Ti-40Nb on the corrosion and passivation behavior in Ringer's solution is assessed by means of potentiodynamic polarization, ICP-OES metal release analysis, XPS and ToF-SIMS for passive film characterization. Like Ti-40Nb, (Ti-40Nb)-4In exhibits very low corrosion rates (icorr = 0.1-0.2 μA/cm2) and stable anodic passivity (ipass = 3-4 μA/cm2). Small In additions do not have a detectable effect on the anodic response of the alloy. For both beta-phase alloys metal release rates are below the quantification limits of ICP-OES. Their strong passivating nature is governed by the formation of thin barrier-type Ti- and Nb-oxide films. Passive films on (Ti-40Nb)-4In surfaces which were formed during OCP exposure or anodic polarization comprise oxidized In species (In2O3, In(OH3)). From the viewpoint of corrosion stability (Ti-40Nb)-4In appears to be suitable for implant applications.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Annett Gebert, Steffen Oswald, Arne Helth, Andrea Voss, Petre Flaviu Gostin, Marcus Rohnke, Jürgen Janek, Mariana Calin, Jürgen Eckert,