Article ID Journal Published Year Pages File Type
5355770 Applied Surface Science 2015 10 Pages PDF
Abstract
Beta-phase Ti-Nb-based alloys are considered as new generation of biomaterials with improved mechanical compatibility for load-bearing implant applications. Small homogeneously dissolved In additions have a positive impact on the elastic properties of beta-type Ti-40Nb. For (Ti-40Nb)-4In the best match between low Young's modulus, high elastic energy and appropriate strength was achieved. In the present study the effect of In addition to Ti-40Nb on the corrosion and passivation behavior in Ringer's solution is assessed by means of potentiodynamic polarization, ICP-OES metal release analysis, XPS and ToF-SIMS for passive film characterization. Like Ti-40Nb, (Ti-40Nb)-4In exhibits very low corrosion rates (icorr = 0.1-0.2 μA/cm2) and stable anodic passivity (ipass = 3-4 μA/cm2). Small In additions do not have a detectable effect on the anodic response of the alloy. For both beta-phase alloys metal release rates are below the quantification limits of ICP-OES. Their strong passivating nature is governed by the formation of thin barrier-type Ti- and Nb-oxide films. Passive films on (Ti-40Nb)-4In surfaces which were formed during OCP exposure or anodic polarization comprise oxidized In species (In2O3, In(OH3)). From the viewpoint of corrosion stability (Ti-40Nb)-4In appears to be suitable for implant applications.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , , ,