Article ID Journal Published Year Pages File Type
5356545 Applied Surface Science 2015 13 Pages PDF
Abstract
In this work, the bioactive glass 45S5 (also known by its commercial name Bioglass®) was successfully dip-coated by a natural derived biopolymer, increasing its apatite-forming ability. The biopolymer was shown to accelerate the first stages of bioactivity, inducing a fast transition to step 4 (formation of amorphous CaP layer) in the apatite-forming ability mechanism. The faster precipitation of Ca/P crystals in the coated samples resulted in the formation of an intermediate amorphous octacalcium phosphate, which later transforms into an apatite layer with high thickness. The effect of the thickness of the coating was also studied on samples coated with polymer suspensions of different concentrations (0.15% and 1.5%, w/v), revealing that the kinetics of formation of the final hydroxycarbonate apatite layer increases with the thickness of the coating. The mechanism by which this apatite-forming ability is accelerated was also investigated, revealing that certain functional groups present in the structure of the polymer allow it to act as an organic matrix and preferential nucleation site for the growth of the hydroxycarbonate apatite layer.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,