Article ID Journal Published Year Pages File Type
5356806 Applied Surface Science 2011 6 Pages PDF
Abstract
Herein we demonstrate an improved metal-assisted etching method to achieve highly dense and uniform silicon nanowire arrays. A pre-surface treatment was applied on a silicon wafer before the process of metal-assisted etching in silver nitrate and hydrogen fluoride solution. The treatment made silver ion continuously reduce on silver nuclei adherence on the silicon surface, leading to formation of dense silver nanoparticles. Silver nanoparticles acting as local redox centers cause the formation of dense silicon nanowire arrays. In contrast, an H-terminated silicon surface made silver ion reduce uniformly on the silicon surface to form silver flakes. The silicon nanowires fabricated with a pre-surface treatment reveals higher density than those fabricated without a pre-surface treatment. The volume fraction improves from 18 to 38%. This improvement reduces the solar-weighted reflectance to as low as 3.3% for silicon nanowires with a length of only 0.87 μm. In comparison, the silicon nanowires fabricated without a pre-surface treatment have to be as long as 1.812 μm to achieve the same reflectance.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,