Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5357654 | Applied Surface Science | 2010 | 5 Pages |
Abstract
Optical catapulting (OC) constitutes an effective method to transport small amounts of different materials in the form of a solid aerosol. In this report, laser-induced breakdown spectroscopy (LIBS) is used for the analysis of those aerosols produced by OC. For this purpose, materials were catapulted using a Q-switch Nd:YAG laser. A second Q-switch Nd:YAG laser was used for LIBS analysis of the ejected particles. Data processing of aerosols was conducted using conditional data analysis. Also, the standard deviation method was used for the qualitative identification of the ejected particles. Two modes of interaction in OC (OC with focused or defocused pulses) have been evaluated and discussed. LIBS demonstrates that the distribution (spreading) of the ejected particles along the propagation axis increased as a function of the interpulse delay time. The mass density and the thickness of the target also play an important role in OC-LIBS.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
F.J. Fortes, J.J. Laserna,