Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5358435 | Applied Surface Science | 2010 | 4 Pages |
Abstract
We present first-principles calculations on the generalized-stacking-fault (GSF) energies and surface properties for several HCP metals on Mg, Be, Ti, Zn, and Zr, employing density functional theory (DFT) within generalized-gradient-approximation (GGA) and spin-polarized GGA (SGGA) using the Vienna ab initio simulation package (VASP). Using a supercell approach, stacking fault energies for the [1 1 2¯ 0] and [1 0 1¯ 0] slip systems, and surface properties on basal plane (0 0 0 1) have been determined. Our results show that GSF energy is sensitive to the primitive cell volumes and the ratio c/a for HCP metals. A spin-polarized calculations should be considered for transition-metal Ti, Zn, and Zr. The results for Mg from this work are good with ones from the previous ab initio and the experiments.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Xiaozhi Wu, Rui Wang, Shaofeng Wang,