Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5358705 | Applied Surface Science | 2014 | 5 Pages |
Abstract
The investigations were performed on samples having a polycrystalline structure, as revealed by X-ray diffraction analysis after annealing process. Moreover, these thin films had a strong orientation with the following planes parallel to the substrate: (1 0 1) for SnO2, (0 0 2) for ZnO:Al and (2 2 2) for ITO film respectively. Atomic force microscopy (AFM) investigations of the ZnO:Al (Rrms = 2.8 nm) and ITO samples (Rrms = 11 nm) show they are homogeneous and a slightly higher roughness (Rrms = 51 nm) for the SnO2 thin film surface. The size and shape of the grains were also observed and investigated by scanning electron microscopy (SEM). All SnO2, ZnO:Al and ITO transparent thin films are uniform and dense.The values obtained for electrical resistivity, transmission and energy bandgap as well as conductivity and transparency properties of these thin films, make them suitable to be used as transparent contact electrodes for solar cells.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
P. Prepelita, V. Craciun, G. Sbarcea, F. Garoi,