Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5359476 | Applied Surface Science | 2010 | 6 Pages |
Abstract
Fe-Co films were electrodeposited on ITO glass substrates from the electrolytes with different molar ratio of Co2+/Fe2+ and different pH values (2.1, 2.9, 3.7, and 4.3) at 25 °C. The properties of Fe-Co alloy films depend on both Co2+ and Fe2+ concentrations in electrolyte and pH values was studied. The content of Co increases from 40% to 85% as the mole ratio of CoSO4/FeSO4 increasing from 0.50/0.50 to 0.90/0.10 in electrolyte and slightly decreases from 77% to 63% as the pH values increasing from 2.1 to 4.3. The X-ray diffraction analysis reveals that the structures of the films strongly depend on the Co content in the binary films. The surface morphologies of the films are influenced by the combined action of composition and phase structure. The saturation magnetization reaches a maximum value of 2974.03 emu/cm3 and coercivity reaches a minimum value of 42.72 Oe of the Fe0.30Co0.70. The saturation magnetization reaches a maximum values of 2974.03 emu/cm3 and coercivity reaches a minimum values of 42.72 Oe of the Fe0.30Co0.70 at pH = 2.9.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Chengwen Qiang, Jincheng Xu, Songtao Xiao, Yongjie Jiao, Zhongquan Zhang, Ying Liu, Liangliang Tian, Zhigang Zhou,