Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5359478 | Applied Surface Science | 2010 | 7 Pages |
Abstract
Ceria plays an important role in catalysis, due to its ability to store and release oxygen depending on the condition present in the catalyst environment. To analyze the role of ceria in catalytic reactions, it is necessary to know the details of the interaction of ceria surface with environmentally sensitive molecules. This study was conducted using ultra accelerated quantum chemical molecular dynamics. Its purpose was to investigate the reduction process of the (1Â 1Â 1) and (1Â 1Â 0) surfaces of ceria with atomic hydrogen as well as water desorption mechanisms from the surfaces. This simulation demonstrated that when a high-energy colliding hydrogen atoms are adsorbed on the ceria, it pulls up an O atom from the ceria surfaces and results in the formation of a H2O molecule. This is the first dynamics simulation related to such reduction processes based on quantum chemistry.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Md. Khorshed Alam, Farouq Ahmed, Ryuji Miura, Ai Suzuki, Hideyuki Tsuboi, Nozomu Hatakeyama, Akira Endou, Hiromitsu Takaba, Momoji Kubo, Akira Miyamoto,