Article ID Journal Published Year Pages File Type
5359502 Applied Surface Science 2010 8 Pages PDF
Abstract
Zn particles are employed to create different impact conditions, including impact-induced interface melting in cold spraying. The influence of particle impact conditions on the interfacial microstructure evolution, microhardness and the bonding of particles in cold-sprayed Zn coatings are studied. An examination of coating surface morphology provides convincing evidence for melting at particle interfaces. The results reveal that the nanostructured phase was formed at the interface areas between deposited particles in coating resulting from the recrystallization of deformed grains. Melting at interfaces significantly enhances the bonding between the substrate and the coating and between the deposited Zn particles in the coating through the formation of a metallurgical bond. In addition, high driving gas temperature causes the decreasing hardness of deposited Zn coatings. The effects of particle conditions on the impact-induced melting and bonding mechanisms are discussed.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,