Article ID Journal Published Year Pages File Type
5359665 Applied Surface Science 2013 6 Pages PDF
Abstract
Mn3O4/TiO2 composite nanosheets have been synthesized by simple and low temperature magnetic stirring method and applied for water treatment application. The synthesized Mn3O4/TiO2 composite nanosheets were characterized by using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The spectroscopic techniques agreed that synthesized product is well crystalline nanosheets composed of Mn3O4/TiO2. The analytical potential of synthesized Mn3O4/TiO2 composite nanosheets was studied for a selective separation of Fe3+ prior to its determination by inductively coupled plasma-optical emission spectrometry. The selectivity of Mn3O4/TiO2 composite nanosheets toward different metal ions, including Au3+, Cd2+, Co2+, Cr3+, Fe3+, Pd2+ and Zn2+ was investigated. Results of the selectivity study demonstrated that Mn3O4/TiO2 composite nanosheets were the most selective toward Fe3+. The adsorption capacity of Fe3+ was found to be 69.80 mg g−1. Moreover, adsorption isotherm data also provided that the adsorption process was mainly monolayer on a homogeneous adsorbent surface.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,