Article ID Journal Published Year Pages File Type
5359698 Applied Surface Science 2013 10 Pages PDF
Abstract
Sandblasting is the most ordinary approach not only to leave the treated regions in compressive residual stress states but also to alter the surface topography of an implant, and micro-arc oxidation (MAO) provides a novelly effective way to produce porous, adhesive and bioactive implant coatings. In this study, ceramic coatings containing Ca and P elements were deposited on the sandblasted pure titanium substrates through the MAO process, and the bioactive performance of the coatings was improved. In addition, the variation of morphology and microstructure, phase and element composition of the coatings according to treating time and related properties were characterized and analyzed, respectively. It was indicated that the hybrid-treated coatings exhibited better properties than that by MAO method, especially in hydroxyapatite (HA) inducing ability, as evidenced by characterization test and HA formation after simulated body fluid (SBF) immersion for days. The enhancement of modified surface was attributed to the combination of the physical and electrochemical treatments.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,