Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5359765 | Applied Surface Science | 2009 | 6 Pages |
Abstract
Hydroxyapatite (HA) coating on AZ31 alloy substrate was prepared by a cathodic electrodeposition method. The as-deposited specimen was then post-treated with hot alkali solution to improve the corrosion resistance and bioactivity for implant applications. The microstructure and composition of HA coating, as well as its degradation behavior in simulated body fluid (SBF) were investigated. It reveals that the as-deposited coating consists of dicalcium phosphate dehydrate (DCPD, CaHPO4·2H2O) and HA. While 10 μm-thick nanowhisker HA coatings doped with Na+, Mg+, HPO42âand CO32â can be found after NaOH alkali treatment, which exhibits a very similar composition of natural bone. The post-treated coating was composed of needle-like particles with 1000 nm in length and 35 nm in diameter, having a slenderness ratio of about 28.6. Electrochemical tests shows that the Ecorr of Mg substrate significantly increased from â1.6 to â1.42 V after surface modified by HA coatings. There was obvious mass gain on post-treated specimen immersed in SBF during the first 30 days due to the Ca-P-Mg deposition. The HA-coated AZ31 alloy could slow down the degradation rate and effectively induce the deposition of Ca-P-Mg apatite in SBF, showing a good bioactivity.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Cuilian Wen, Shaokang Guan, Li Peng, Chenxing Ren, Xiang Wang, Zhonghua Hu,