Article ID Journal Published Year Pages File Type
5359930 Applied Surface Science 2014 7 Pages PDF
Abstract
In this study, we investigated the effect of UV-ozone and μPlasma printing on surface modification of polycarbonate (PC) and polyethylene naphthalate (PEN). The effects on the wetting behaviour was studied, in terms of surface energy and chemical modification of the treated substrate, by analysis of attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Both UV-ozone and μPlasma printing are effective ways to modify the wettability of both polymer substrates, substantially increasing the wetting envelope after a short treatment period. This increase is primarily due to an increase of the polar part of the surface energy. This is confirmed by ATR-FTIR and XPS, which show the formation of oxygen containing groups as well as a decrease in the aromatic CC bonds on the surface of the substrate due to the treatment. For both types of surface treatment, prolonged exposure showed no further increase in wettability, although continuous change in chemical composition of the surface was measured. This effect is more evident for UV-ozone treatment, as a larger increase in O/C ratio of the surface was measured as compared to μPlasma printing. It can be concluded that μPlasma printing results in a more chemically selective modification as compared to UV-ozone. In the case that chemical selectivity and treatment time are considered important, μPlasma printing is favourable over UV-ozone.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,