Article ID Journal Published Year Pages File Type
5360323 Applied Surface Science 2008 4 Pages PDF
Abstract

Using a near-field scanning optical microscope, near-field photocurrent and topographic imaging has measured the effect on intrinsic electric fields and photocurrent propagation resulting from inserting multi-quantum barrier (MQB) super-lattices into quantum well lasers. Measurements on devices at two different excitation wavelengths have highlighted the sensitivity of the near-field optical technique. Strong correlations were seen in the photocurrent response of the multi-quantum barrier regions when compared with simulations made on the electric field generated within the structure. As a result, photocurrent attenuation was attributed to carrier confinement in these barrier regions when compared to a control sample. The measurements illustrate the effectiveness of the MQB, in addition to the sensitivity and power of the near-field photocurrent technique.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,