Article ID Journal Published Year Pages File Type
5360507 Applied Surface Science 2010 5 Pages PDF
Abstract
Synthesis of titania (TiO2) nanoparticles (NPs) has been performed with pulsed laser ablation (PLA) approach by irradiating a 1064 nm Nd:YAG laser pulses on the titanium target immersed in pure water. A systematic characterization on the products, synthesized in different laser pulse energies, illustrated the conspicuous dependence of crystalline phase and size distribution of the NPs on this parameter. Emission spectroscopy of the induced plasma was exploited to justify the formation of titania NPs through the synthesis process, as well as the emergence of rutile phase beside the anatase by increasing the laser pulse energies. In addition, UV-vis optical absorption and Raman spectroscopy, associated with X-ray diffraction (XRD) were employed to quantitatively determine the crystalline phases of the products. Morphological observations by means of transmission electron microscopy (TEM), demonstrating the spherical shape of the synthesized NPs, was utilized to investigate the variation of particle size distribution with the laser pulse energy.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,