Article ID Journal Published Year Pages File Type
5360544 Applied Surface Science 2010 6 Pages PDF
Abstract
FT-IR (Fourier-transform infrared) spectroscopy and density function theory (DFT) methods have been applied to the investigation of the interaction of NO and N2O with Fe3+ species in a beta zeolite (BEA). The geometries for H-BEA and Fe-BEA represented as 10T cluster, and NO and N2O adsorption on them in η1-O and η1-N modes have been completely optimized. The results show that NOx could be adsorbed on Fe3+ species and Brønsted acid sites in two modes, but NOx is mainly bonded by N to H or Fe atom and the iron site is preferred. NOx adsorbed on Fe3+ species is more stable than on Brønsted acid sites. Adsorption energies for N2O and NO follow the order of NO > N2O, predicating that the affinity of NO molecule on BEA zeolite is much stronger than N2O molecule on BEA zeolite.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,