Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5361358 | Applied Surface Science | 2014 | 7 Pages |
Abstract
In this paper, three kinds of thermal processes for boron-doped PERL cells were investigated. These are the forming gas annealing (FGA), the rapid thermal (RTP) and the low temperature annealing processes. FGA was introduced after laser ablation and doping in order to increase minority carrier lifetime by hydrogenating the trapping centers. Subsequent evaluation revealed considerable enhancement of minority carrier lifetime (from 150 μs to 240 μs) and the implied Voc (from 660 mV to 675 mV). After aluminum sputtering, three actual peak temperatures (370 °C, 600 °C and 810 °C) of RTP (as it occurs in the compressed air environment used in our experiment) were utilized to form a contact between the metal and the semi-conductor. It is concluded that only low temperature (lower than 600 °C) firing could create boron back surface field and high quality rear reflector. Lastly, a method of improving the performance of finished PERL cells which did not experience high temperature (over 800 °C) firing was investigated. Finished cells undergone low temperature annealing in N2 atmosphere at 150 °C for 15 min produced 0.44% absolute increase in PERL cells. The enhancement of low temperature annealing originally comes from the activation of passivated boron which is deactivated during FGA.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Wenjia Li, Zhenjiao Wang, Peiyu Han, Hongyan Lu, Jian Yang, Ying Guo, Zhengrong Shi, Guohua Li,