Article ID Journal Published Year Pages File Type
5361953 Applied Surface Science 2008 6 Pages PDF
Abstract
To enhance the wear resistance of mechanical components, laser cladding has been applied to deposit in situ TiB2/Fe composite coating on steel using ferrotitanium and ferroboron as the coating precursor. The phase constituents and microstructure of the composite coating were investigated using X-ray diffraction (XRD), scanning electron micrograph (SEM) and electron probe microanalysis (EPMA). Microhardness tester and block-on-ring wear tester were employed to measure the microhardness and dry-sliding wear resistance of the composite coating. Results show that defect-free composite coating with metallurgical joint to the steel substrate can be obtained. Phases presented in the coating consist of TiB2 and α-Fe. TiB2 particles which are formed in situ via nucleation-growth mechanism are distributed uniformly in the α-Fe matrix with blocky morphology. The microhardness and wear properties of the composite coating improved significantly in comparison to the as-received steel substrate due to the presence of the hard reinforcement TiB2.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,