Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5361998 | Applied Surface Science | 2009 | 6 Pages |
To enhance the thermal insulation effect, waterproof/breathable fabrics were directly top dual-coated by the dry coating method with ceramic materials (silicon carbide, SiC). The fabric was base coated by the wet coating method with 5Â wt% phase-change material microcapsules (PCMMcs) and tested for the emission of far-infrared (FIR) radiation. With increasing SiC content, the fabric altered some of the physical properties by increasing the FIR emissivity, emission power, water vapor transmission rate (WVTR) and heat release capacity. Scanning electron microscopy (SEM) analysis revealed the presence of the PCMMcs and SiC particles at the cross-section and surface of the coating, respectively, which exhibited a rugged and blocky shape. The results indicated that SiC addition did not affect the water entry pressure (WEP) in the fabric structure, but did alter the following physical properties: WVTR, interactions between the macromolecule chains and the susceptibility to humidity.