Article ID Journal Published Year Pages File Type
5362015 Applied Surface Science 2009 6 Pages PDF
Abstract

The layered perovskite type oxides, K2La2Ti3O10 and zinc(Zn)-doped K2La2Ti3O10 were prepared by sol-gel method and were characterized by power X-ray diffraction, UV-vis diffuse reflectance and X-ray photoelectron spectroscopy. The photocatalytic activity for water splitting of the catalyst powders was investigated with I− as electron donor under ultraviolet and visible light irradiation respectively. The electronic structure of the powders has been analyzed by the first principles calculation, which reveals the photo responses in the visible region and the improvement of the photocatalytic activity of K2La2Ti3O10. Conclusions were made that zinc(Zn)-doped K2La2Ti3O10 exhibited higher reactivity for hydrogen production. When I− was used as electron donor, the optimum doping concentration of zinc(Zn) was found to be 0.015:1 (nZn:nTi). The average hydrogen production rates were 126.6 μmol/(gcat h) under ultraviolet irradiation and 55.5 μmol/(gcat h) under visible light irradiation which were raised by 131% and 251% compared with undoped K2La2Ti3O10 photocatalyst, respectively.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,