Article ID Journal Published Year Pages File Type
5362305 Applied Surface Science 2010 6 Pages PDF
Abstract

In this study, we examined the nanoscratch behavior of annealed multilayered silicon-germanium (SiGe) films comprising alternating sublayers (Si) deposited using an ultrahigh-vacuum chemical vapor deposition (UHV/CVD) system. Annealing consisted of ex situ thermal treatment in a furnace system. We used a nanoscratch technique to investigate the nanotribological behavior of the SiGe films and atomic force microscopy (AFM) to observe deformation phenomena. Our AFM morphological studies of the SiGe films revealed that pile-up phenomena occurred on both sides of each scratch. The scratched surfaces of the SiGe films that had been subjected to various annealing conditions exhibited significantly different features, it is conjectured that cracking dominates in the case of SiGe films while ploughing dominates during the scratching process. We obtained higher coefficients of friction (μ) when the ramped force was set at 6000 μN, rather than 2000 μN, suggesting that annealing of SiGe films leads to higher shear resistance; annealing treatment not only produced misfit dislocations in the form of a significantly wavy sliding surface but also promoted scratching resistance.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
,