Article ID Journal Published Year Pages File Type
5362560 Applied Surface Science 2009 6 Pages PDF
Abstract
Particles generated by 2.94 μm pulsed IR laser ablation of liquid 3-nitrobenzyl alcohol were irradiated with a 351 nm UV laser 3.5 mm above and parallel to the sample target. The size and concentration of the ablated particles were measured with a light scattering particle sizer. The application of the UV laser resulted in a reduction in the average particle size by one-half and an increase in the total particle concentration by a factor of nine. The optimum delay between the IR and UV lasers was between 16 and 26 μs and was dependent on the fluence of the IR laser: higher fluence led to a more rapid appearance of particulate. The ejection velocity of the particle plume, as determined by the delay time corresponding to the maximum two-laser particle concentration signal, was 130 m/s at 1600 J/m2 IR laser fluence and increased to 220 m/s at 2700 J/m2. The emission of particles extended for several ms. The observations are consistent with a rapid phase change and emission of particulate, followed by an extended emission of particles ablated from the target surface.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,