Article ID Journal Published Year Pages File Type
5362818 Applied Surface Science 2009 5 Pages PDF
Abstract
A new process of preparing Ti-Fe-C composites powder for reactive plasma cladding, precursor carbonization-composition process, was developed. TiC/Fe cermet coatings were synthesized by reactive plasma cladding of the composite powder. XRD and SEM were employed to analyze the phase composition and microstructure of the composite powder and coating. The hardness and wear resistance of the coating was tested. Results show that: The compound powder prepared by precursor carbonization-composition process has very tight structure, which can avert the question of raw powder breaking-up in cladding process. The TiC/Fe cermet coating by reactive plasma cladding consists of alternate, laminated layers as following: the layers in which the round nanoscale TiC particles are dispersed within the α-Fe matrix and the layers of TiC accumulation. The TiC/Fe cermet coating by reactive plasma cladding shows superior hardness and wear resistance: The surface hardness of the TiC/Fe cermet coating is 68 ± 6 (HR30 N). In the same fretting conditions, the wear resistance of Ni60 coating is twelve times than that of the TiC/Fe cermet coating.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,