Article ID Journal Published Year Pages File Type
5363035 Applied Surface Science 2010 5 Pages PDF
Abstract
Ag(TCNQ) and Cu(TCNQ) nanowires were synthesized via vapor-transport reaction method at a low temperature of 100 °C. Field emission properties of the as-obtained nanowires on ITO glass substrates were studied. The turn-on electric fields of Ag(TCNQ) and Cu(TCNQ) nanowires were 9.7 and 7.6 V/μm (with emission current of 10 μA/cm2), respectively. The turn-on electric fields of Ag(TCNQ) and Cu(TCNQ) nanowires decreased to 6 and 2.2 V/μm, and the emission current densities increased by two orders at a field of 8 V/μm with a homogeneous-like metal (e.g. Cu for Cu(TCNQ)) buffer layer to the substrate. The improved field emission is due to the better conduct in the nanowires/substrate interface and higher internal conductance of the nanowires. The patterned field emission cathode was then fabricated by localized growing M-TCNQ nanowires onto mask-deposited metal film buffer layer. The emission luminance was measured to be 810 cd/m2 at a field of 8.5 V/μm.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,