Article ID Journal Published Year Pages File Type
5363714 Applied Surface Science 2010 5 Pages PDF
Abstract

Laser shock forming (LSF) is characterized in non-contact load, high pressure and high strain ratio. This new forming process using laser-induced shock pressure can shape sheet metal without complicated forming equipments. The know-how of the forming process is essential to efficiently and accurately control the deformation of sheet metal. Experiment and numerical simulation are the important approaches for forming analysis. Taken the aluminum sheets with different thickness as the specimen, the finite element (FE) analysis for LSF was performed. In the paper, Q-switch Nd:YAG Laser with a maximum power density of 4.5 GW/cm2 was used. The simulation results were in good agreement with the experiment. It showed that the formed aluminum sheets were in the form of concavo-convex. Finally, the transient and static deformations of thin sheet metal under specific operation conditions were also studied.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,