Article ID Journal Published Year Pages File Type
5363834 Applied Surface Science 2013 7 Pages PDF
Abstract

A new, simple, and low-cost method has been developed to enhance the surface properties of TiO2 film. Degussa P25-TiO2 nanoparticles were modified by tetraethyl orthosilicate (TEOS) on glazed ceramic tiles. Effects of tetraethyl orthosilicate modification on microstructure, crystal structure, hydrophilicity, photocatalytic activity and stability of the film were investigated. The obtained results showed that P25-TiO2/TEOS particles exhibited better dispersion, higher surface area, bigger surface roughness and smaller particle size comparing to pure P25-TiO2 particles, which resulted in better hydrophilicity after 10 days in a dark place and higher photocatalytic activity under visible light irradiation. 68% of Rhodamine B was degraded by P25-TiO2/TEOS film in 25 h with the light intensity of 5000 ± 500 lx, and degradation rate reached to 82% with the light intensity of 10,000 ± 1000 lx. Furthermore, two fundamentally different systems, in which the films recycle for repetitive degradation after soaked in dye solution and for discoloration after depositing dye on the surfaces, respectively, were measured to confirm that P25-TiO2/TEOS film showed excellently stable performances. Therefore the P25-TiO2/TEOS film we obtained has good washing resistance and would be a promising candidate for practical applications.

► P25-TiO2/TEOS film was prepared onto glazed ceramic surface by a simple method. ► The hydrophilicity and photocatalytic activity were studied under visible light. ► P25-TiO2/TEOS film shows higher photocatalytic activity and good stability.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,