Article ID Journal Published Year Pages File Type
5364596 Applied Surface Science 2012 6 Pages PDF
Abstract

Polymethylmethacrylate (PMMA) specimens were implanted with 30 keV carbon ions in a fluence range of 1 × 1016 to 2 × 1017 cm−2, and photoluminescence (PL) and reflectivity of the implanted samples were examined. A luminescent band with one peak was found in PL spectra excited by 480 nm line, but its intensity did not vary in parallel with ion fluence. The strongest PL occurred at the fluence of 5 × 1016 cm−2. Results from visible-light-excited micro-Raman spectra indicated that the formation of hydrogenated amorphous carbon structures in subsurface layer and their evolutions with ion fluence could be responsible for the observed PL responses. Measurements of the small-angle reflectance spectra from both the implanted and rear surfaces of samples in the ultraviolet-visible (UV-vis) range demonstrated a kind of both fluence-dependent and wavelength-related reflectivity variations, which were attributed to the structural changes induced by ion implantation. A noticeable reflectivity modification, which may be practically used, could be found at the fluence of 1 × 1016 cm−2.

► Photoluminescence was studied in carbon implanted polymethylmethacrylate (PMMA). ► A significant photoluminescence enhancement occurred at ion fluence of 5 × 1016 cm−2. ► Photoluminescence and Raman responses revealed carbon nanoclustered structures. ► Reflectivity of carbon implanted PMMA depended on both ion fluence and wavelength. ► A noticeable reflectivity modification appeared at ion fluence of 1 × 1016 cm−2.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,