Article ID Journal Published Year Pages File Type
5364709 Applied Surface Science 2007 4 Pages PDF
Abstract

Three-dimensional dissection of a single actin stress fiber in a living cell was performed based on multi-photon absorption of a focused femtosecond laser pulse. The realignment process of an actin stress fiber was investigated after its direct cutting by a single-shot femtosecond laser pulse irradiation by high-speed transmission and fluorescence imaging methods. It was confirmed that mechanical force led by the femtosecond laser cutting propagates to entire cell through the cytockelton in a 100 μs time scale. The cut actin stress fiber was realigned in the time scale of a few tens of minutes. The dynamic analysis of the realignment induced by single-shot femtosecond laser gives new information on cell activity.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , , , ,