Article ID Journal Published Year Pages File Type
5364857 Applied Surface Science 2009 7 Pages PDF
Abstract

We study the structural properties of the surface roughness, the surface mound size and the interfacial structure in Ni thin films vacuum-deposited on polyethylene naphthalate (PEN) organic substrates with and without the application of magnetic field and discuss its feasibility of fabricating quantum cross (QC) devices. For Ni/PEN evaporated without the magnetic field, the surface roughness decreases from 1.3 nm to 0.69 nm and the surface mound size increases from 32 nm to 80 nm with the thickness increased to 41 nm. In contrast, for Ni/PEN evaporated in the magnetic field of 360 Oe, the surface roughness tends to slightly decrease from 1.3 nm to 1.1 nm and the surface mound size shows the almost constant value of 28-30 nm with the thickness increased to 35 nm. It can be also confirmed for each sample that there is no diffusion of Ni into the PEN layer, resulting in clear Ni/PEN interface and smooth Ni surface. Therefore, these experimental results indicate that Ni/PEN films can be expected as metal/insulator hybrid materials in QC devices, leading to novel high-density memory devices.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , , ,