Article ID Journal Published Year Pages File Type
5365476 Applied Surface Science 2010 5 Pages PDF
Abstract

Ni-Mn-Ga thin films have been fabricated by using magnetron sputtering technique under various substrate negative bias voltages. The effect of substrate negative bias voltage on the compositions and surface morphology of Ni-Mn-Ga thin films was systematically investigated by energy dispersive X-ray spectrum and atomic force microscopy, respectively. The results show that the Ni contents of the thin films increase with the increase of the substrate negative bias voltages, whereas the Mn contents and Ga contents decrease with the increase of substrate negative bias voltages. It was also found that the surface roughness and average particle size of the thin films remarkably decrease with the increase of substrate negative bias voltages. Based on the influence of bias voltages on film compositions, a Ni56Mn27Ga17 thin film was obtained at the substrate negative bias voltage of 30 V. Further investigations indicate that the martensitic transformation start temperature of this film is up to 584 K, much higher than room temperature, and the film has a non-modulated tetragonal martensitic structure at room temperature. Transmission electron microscopy observations reveal that microstructure of the thin film exhibits an internally (1 1 1) type twinned substructure. The fabrication of Ni56Mn27Ga17 high-temperature shape memory alloy thin film will contribute to the successful development of microactuators.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , ,