Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5365497 | Applied Surface Science | 2010 | 5 Pages |
Abstract
The laser surface melting (LSM) technique was adopted to modify the surface layer microstructure of the AISI 304 stainless steel in this paper. The results showed that the hexagonal morphologies have been successfully fabricated on the surface after LSM. These hexagons had side lengths of about 0.5-1 μm and were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). It was proved by the XRD that the stainless steel surface mainly consisted of γ-Fe, Cr2O3, Fe2O3 and some manganese oxides. The FESEM micrographs showed that the hexagonal oxides were regular hexagons in geometry. The HRTEM micrographs also indicated the presence of the hexagons on the surface of the stainless steel. The spacing values were calculated from the HRTEM micrograph and the SAED pattern, and the hexagonal oxide phases determined by these spacing values were consistent with those verified by the XRD. After LSM, the microhardness of the stainless steel was significantly improved.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
C.Y. Cui, X.G. Cui, Y.K. Zhang, K.Y. Luo, Q. Zhao, J.D. Hu, Z. Liu, Y.M. Wang,