Article ID Journal Published Year Pages File Type
5365536 Applied Surface Science 2007 12 Pages PDF
Abstract
It was demonstrated that smooth Nb surfaces could be obtained through buffered electropolishing (BEP) employing an electrolyte consisting of lactic, sulfuric, and hydrofluoric acids. Parameters that control the polishing process were optimized to achieve a smooth surface finish. The polishing rate of BEP was determined to be 0.646 μm/min which was much higher than 0.381 μm/min achieved by the conventional electropolishing (EP) process widely used in the superconducting radio frequency (SRF) community. Root mean square measurements using a 3D profilometer revealed that Nb surfaces treated by BEP were an order of magnitude smoother than those treated by the optimized EP process. The chemical composition of the Nb surfaces after BEP was analyzed by static and dynamic secondary ion mass spectrometry (SIMS) systems. SIMS results implied that the surface oxide structure of Nb might be more complicated than what usually believed and could be inhomogeneous. Preliminary results of BEP on Nb SRF single cell cavities and half-cells were reported. It was shown that smooth and bright surfaces could be obtained in 1800 s when the electric field inside a SRF cavity was uniform during a BEP process. This study showed that BEP is a promising technique for surface treatment on Nb SRF cavities to be used in particle accelerators.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , ,