Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5365858 | Applied Surface Science | 2008 | 6 Pages |
A simple and well-designed synthesis procedure is proposed to fabricate silicalite-1 films on porous α-Al2O3 substrates on purpose of preventing the aluminum leaching. The continuous and 2 μm thick seed layer of silicalite-1 crystals is fabricated by using a spin coater. The first-time seeded growth is performed to synthesize a thin layer of intergrown ZSM-5 crystals on the silicalite-1 seed layer, where the use of low alkalinity and short synthesis time is to reduce the aluminum leaching. The intergrown layer of ZSM-5 crystals serves as a barrier to block the aluminum leaching from porous α-Al2O3 substrates in the second-time seeded growth, leading to the formation of ca. 11 μm thick intergrown and oriented silicalite-1 films with an extremely high Si/Al ratio. According to SEM images and XRD measurements, the as-synthesized silicalite-1 film is dense, continuous, and (1 0 1)-oriented. The electron probe microanalysis (EPMA) of the resulting film demonstrates that there is no aluminum leaching in the second-time seeded growth. The leaking tests confirm that non-zeolitic pores in the silicalite-1 film are negligible.